18 research outputs found

    Automated annotation of chemical names in the literature with tunable accuracy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A significant portion of the biomedical and chemical literature refers to small molecules. The accurate identification and annotation of compound name that are relevant to the topic of the given literature can establish links between scientific publications and various chemical and life science databases. Manual annotation is the preferred method for these works because well-trained indexers can understand the paper topics as well as recognize key terms. However, considering the hundreds of thousands of new papers published annually, an automatic annotation system with high precision and relevance can be a useful complement to manual annotation.</p> <p>Results</p> <p>An automated chemical name annotation system, MeSH Automated Annotations (MAA), was developed to annotate small molecule names in scientific abstracts with tunable accuracy. This system aims to reproduce the MeSH term annotations on biomedical and chemical literature that would be created by indexers. When comparing automated free text matching to those indexed manually of 26 thousand MEDLINE abstracts, more than 40% of the annotations were false-positive (FP) cases. To reduce the FP rate, MAA incorporated several filters to remove "incorrect" annotations caused by nonspecific, partial, and low relevance chemical names. In part, relevance was measured by the position of the chemical name in the text. Tunable accuracy was obtained by adding or restricting the sections of the text scanned for chemical names. The best precision obtained was 96% with a 28% recall rate. The best performance of MAA, as measured with the F statistic was 66%, which favorably compares to other chemical name annotation systems.</p> <p>Conclusions</p> <p>Accurate chemical name annotation can help researchers not only identify important chemical names in abstracts, but also match unindexed and unstructured abstracts to chemical records. The current work is tested against MEDLINE, but the algorithm is not specific to this corpus and it is possible that the algorithm can be applied to papers from chemical physics, material, polymer and environmental science, as well as patents, biological assay descriptions and other textual data.</p

    Stringent response of Escherichia coli: revisiting the bibliome using literature mining

    Get PDF
    Understanding the mechanisms responsible for cellular responses depends on the systematic collection and analysis of information on the main biological concepts involved. Indeed, the identification of biologically relevant concepts in free text, namely genes, tRNAs, mRNAs, gene products and small molecules, is crucial to capture the structure and functioning of different responses. Results In this work, we review literature reports on the study of the stringent response in Escherichia coli. Rather than undertaking the development of a highly specialised literature mining approach, we investigate the suitability of concept recognition and statistical analysis of concept occurrence as means to highlight the concepts that are most likely to be biologically engaged during this response. The co-occurrence analysis of core concepts in this stringent response, i.e. the (p)ppGpp nucleotides with gene products was also inspected and suggest that besides the enzymes RelA and SpoT that control the basal levels of (p)ppGpp nucleotides, many other proteins have a key role in this response. Functional enrichment analysis revealed that basic cellular processes such as metabolism, transcriptional and translational regulation are central, but other stress-associated responses might be elicited during the stringent response. In addition, the identification of less annotated concepts revealed that some (p)ppGpp-induced functional activities are still overlooked in most reviews. Conclusions In this paper we applied a literature mining approach that offers a more comprehensive analysis of the stringent response in E. coli. The compilation of relevant biological entities to this stress response and the assessment of their functional roles provided a more systematic understanding of this cellular response. Overlooked regulatory entities, such as transcriptional regulators, were found to play a role in this stress response. Moreover, the involvement of other stress-associated concepts demonstrates the complexity of this cellular response

    Revisiting unexploited antibiotics in search of new antibacterial drug candidates: the case of gamma-actinorhodin

    No full text
    Of the thousands of natural product antibiotics discovered to date, only a handful have been developed for the treatment of bacterial infection. The clinically unexploited majority likely include compounds with untapped potential as antibacterial drugs, and in view of the ever-growing unmet medical need for such agents, warrant systematic re-evaluation. Here we revisit the actinorhodins, a class that was first reported 70 years ago, but which remains poorly characterized. We show that γ-actinorhodin possesses many of the requisite properties of an antibacterial drug, displaying potent and selective bactericidal activity against key Gram-positive pathogens (including Staphylococcus aureus and enterococci), a mode of action distinct from that of other agents in clinical use, an extremely low potential for the development of resistance, and a degree of in vivo efficacy in an invertebrate model of infection. Our findings underscore the utility of revisiting unexploited antibiotics as a source of novel antibacterial drug candidates
    corecore